Friday, January 13, 2006

Horse's Stare

"Nature does nothing uselessly." Aristotle














Photo by CRBowman

Thursday, January 12, 2006

Nirvana

Buddhist Nirvana

Religious Diversity Hinduism and Buddhism are divided into many different sects with a wide variety of beliefs. Many theologians don't even recognize Hinduism as a single religion, but only as a collection of religious practices that join many different groups. Consequently, there are very few qualities or beliefs you can attribute to Hinduism or Buddhism as a whole. But there are a number of ideas that broadly characterize the religions. When we talk about Hindu and Buddhist beliefs, we're referring to these general tenets that are common to most major sects. The term nirvana is associated with both Hinduism, the oldest religion in the world, and Buddhism, its best known off-shoot. In both Hinduism and Buddhism, the word refers to a higher state of being, but the two religions view this state very differently. As it turns out, examining the distinction between the concepts of nirvana is an excellent way of understanding some of the major differences between the two religions.

Nirvana is mainly associated with Buddhism, which was born out of Hinduism back in the 5th century B.C. It began as a movement within Hinduism, based on the philosophy and life of a man named Siddhartha Gautama, and eventually diverged to form its own path.
Siddhartha Gautama, who later became the Buddha ("the awakened one"), was born to a rich, ruling family around 563 B.C. in what is now modern Nepal. According to Buddhist legend, he led a sheltered, pampered life for all of his childhood and well into his twenties.

As a young man, he began to question the spiritual worth of this luxurious life and decided to give up all his possessions and emotional attachments, including his wife and young son. He wanted to understand the true nature of life and saw all his attachments as distractions, in keeping with Hindu thought. He became a shramana, a wandering, homeless ascetic dedicated to meditation. He hoped to find enlightenment by completely detaching himself from the world, swinging to the polar opposite of his earlier life. Over time, he removed himself farther and farther from the earthly world, to the point that he was close to starvation. But he still hadn't achieved enlightenment.

Most sects believe that art can bring about moments of enlightenment. He decided that if he continued on that path, he would die without reaching any understanding, so he gave up the ascetic life and accepted a meal from a stranger. He decided to take the middle road, the life between the luxury he had known and the poverty he had known.

According to legend, soon after Siddhartha took this path, he finally achieved enlightenment. As he meditated under a tree, he saw all of his past lives, and then the past lives of others. Eventually he gained a perfect, omniscient knowledge of this world and the world beyond it.
The most famous Buddhist figure today, Tenzin Gyatso, the 14th Dalai Lama: His followers consider him a living buddha, the incarnation of the Buddha of Compassion. In Buddhism, this state, which the Buddha couldn't relate in language, is called nirvana. The word is Sanskrit for "to extinguish." In this case, it means to extinguish ignorance, hatred and earthly suffering. The term is most closely associated with Buddhism, though it's applied to a similar concept in Hinduism (as we'll see later on). By achieving nirvana, you can escape samsara, the cycle of reincarnation that characterizes both Hinduism and Buddhism. In each life, a soul is punished or rewarded based on its past actions, or karma, from the current life as well as earlier lives (which also include lives as animals). It's important to note that the law of karma isn't due to a god's judgment over a person's behavior; it's closer to Newtons law of motion -- every action has an equal and opposite reaction. It happens automatically, of its own accord. When you achieve nirvana, you stop accumulating bad karma because you've transcended it. You spend the rest of your life and sometimes future lives "working off" the bad karma you've already accumulated.
Once you have fully escaped the karmic cycle, you achieve parinirvana -- final nirvana -- in the afterlife. As with Hindu nirvana, souls that have achieved parinirvana are free of the cycle of reincarnation. The Buddha never specified what parinirvana was like. In Buddhist thought, it is beyond normal human comprehension.

Tuesday, January 10, 2006

A Filmless Camera

A Filmless Camera:

A CMOS image sensorInstead of film, a digital camera has a sensor that converts light into electrical charges. The image sensor employed by most digital cameras is a charge coupled device (CCD). Some cameras use complementary metal oxide semiconductor (CMOS) technology instead. Both CCD and CMOS image sensors convert light into electrons. If you've read How Solar Cells Work, you already understand one of the pieces of technology used to perform the conversion. A simplified way to think about these sensors is to think of a 2-D array of thousands or millions of tiny solar cells. Once the sensor converts the light into electrons, it reads the value (accumulated charge) of each cell in the image. This is where the differences between the two main sensor types kick in: A CCD transports the charge across the chip and reads it at one corner of the array. An analog-to-digital converter (ADC) then turns each pixel's value into a digital value by measuring the amount of charge at each photosite and converting that measurement to binary form. CMOS devices use several transistors at each pixel to amplify and move the charge using more traditional wires. The CMOS signal is digital, so it needs no ADC. Differences between the two types of sensors lead to a number of pros and cons:
CCD sensor: CCD sensors create high-quality, low-noise images. CMOS censors are generally more susceptible to noise. Because each pixel on a CMOS sensor has several transistors located next to it, the light sensitivity of a CMOS chip is lower. Many of the photons hit the transistors instead of the photodiode. CMOS sensors traditionally consume little power. CCDs, on the other hand, use a process that consumes lots of power. CCDs consume as much as 100 times more power than an equivalent CMOS sensor. CCD sensors have been mass produced for a longer period of time, so they are more mature. They tend to have higher quality pixels, and more of them. Although numerous differences exist between the two sensors, they both play the same role in the camera -- they turn light into electricity. For the purpose of understanding how a digital camera works, you can think of them as nearly identical devices.
Resolution:
Not sure how many pixels you need?Check out StuffGuide.com for everything you need to know about selecting your camera's resolution and features. The amount of detail that the camera can capture is called the resolution, and it is measured in pixels. The more pixels a camera has, the more detail it can capture and the larger pictures can be without becoming blurry or "grainy."
Some typical resolutions include:
256x256 - Found on very cheap cameras, this resolution is so low that the picture quality is almost always unacceptable. This is 65,000 total pixels.
640x480 - This is the low end on most "real" cameras. This resolution is ideal for e-mailing pictures or posting pictures on a Web site.
1216x912 - This is a "megapixel" image size -- 1,109,000 total pixels -- good for printing pictures.
1600x1200 - With almost 2 million total pixels, this is "high resolution." You can print a 4x5 inch print taken at this resolution with the same quality that you would get from a photo lab.
2240x1680 - Found on 4 megapixel cameras -- the current standard -- this allows even larger printed photos, with good quality for prints up to 16x20 inches. 4064x2704 - A top-of-the-line digital camera with 11.1 megapixels takes pictures at this resolution. At this setting, you can create 13.5x9 inch prints with no loss of picture quality.

The size of an image taken at different resolutions:
High-end consumer cameras can capture over 12 million pixels. Some professional cameras support over 16 million pixels, or 20 million pixels for large-format cameras. For comparison, Hewlett Packard estimates that the quality of 35mm film is about 20 million pixels.

How Many Pixels?:
You may have noticed that the number of pixels and the maximum resolution don't quite compute. For example, a 2.1-megapixel camera can produce images with a resolution of 1600x1200, or 1,920,000 pixels. But "2.1 megapixel" means there should be at least 2,100,000 pixels. This isn't an error from rounding off or binary mathematical trickery. There is a real discrepancy between these numbers because the CCD has to include circuitry for the ADC to measure the charge. This circuitry is dyed black so that it doesn't absorb light and distort the image. Capturing ColorUnfortunately, each photosite is colorblind. It only keeps track of the total intensity of the light that strikes its surface. In order to get a full color image, most sensors use filtering to look at the light in its three primary colors. Once the camera records all three colors, it combines them to create the full spectrum.

How the three colors mix to form many colors:
There are several ways of recording the three colors in a digital camera. The highest quality cameras use three separate sensors, each with a different filter. A beam splitter directs light to the different sensors. Think of the light entering the camera as water flowing through a pipe. Using a beam splitter would be like dividing an identical amount of water into three different pipes. Each sensor gets an identical look at the image; but because of the filters, each sensor only responds to one of the primary colors. The advantage of this method is that the camera records each of the three colors at each pixel location. Unfortunately, cameras that use this method tend to be bulky and expensive.

Another method is to rotate a series of red, blue and green filters in front of a single sensor. The sensor records three separate images in rapid succession. This method also provides information on all three colors at each pixel location; but since the three images aren't taken at precisely the same moment, both the camera and the target of the photo must remain stationary for all three readings. This isn't practical for candid photography or handheld cameras.
A spinning disk filter Both of these methods work well for professional studio cameras, but they're not necessarily practical for casual snapshots. Next, we'll look at filtering methods that are more suited to small, efficient cameras. More on Capturing ColorA more economical and practical way to record the primary colors is to permanently place a filter called a color filter array over each individual photosite. By breaking up the sensor into a variety of red, blue and green pixels, it is possible to get enough information in the general vicinity of each sensor to make very accurate guesses about the true color at that location. This process of looking at the other pixels in the neighborhood of a sensor and making an educated guess is called interpolation. The most common pattern of filters is the Bayer filter pattern. This pattern alternates a row of red and green filters with a row of blue and green filters. The pixels are not evenly divided -- there are as many green pixels as there are blue and red combined. This is because the human eye is not equally sensitive to all three colors. It's necessary to include more information from the green pixels in order to create an image that the eye will perceive as a "true color."

The advantages of this method are that only one sensor is required, and all the color information (red, green and blue) is recorded at the same moment. That means the camera can be smaller, cheaper, and useful in a wider variety of situations. The raw output from a sensor with a Bayer filter is a mosaic of red, green and blue pixels of different intensity. Digital cameras use specialized demosaicing algorithms to convert this mosaic into an equally sized mosaic of true colors. The key is that each colored pixel can be used more than once. The true color of a single pixel can be determined by averaging the values from the closest surrounding pixels. A demosaicing algorithm at work Some single-sensor cameras use alternatives to the Bayer filter pattern. X3 technology, for example, embeds red, green and blue photodetectors in silicon. Some of the more advanced cameras subtract values using the typesetting colors cyan, yellow, green and magenta instead of blending red, green and blue. There is even a method that uses two sensors. However, most consumer cameras on the market today use a single sensor with alternating rows of green/red and green/blue filters.

Exposure and Focus: Just as with film, a digital camera has to control the amount of light that reaches the sensor. The two components it uses to do this, the aperture and shutter speed, are also present on conventional cameras.

Aperture: The size of the opening in the camera. The aperture is automatic in most digital cameras, but some allow manual adjustment to give professionals and hobbyists more control over the final image.

Shutter speed: The amount of time that light can pass through the aperture. Unlike film, the light sensor in a digital camera can be reset electronically, so digital cameras have a digital shutter rather than a mechanical shutter. These two aspects work together to capture the amount of light needed to make a good image. In photographic terms, they set the exposure of the sensor. You can learn more about a camera's aperture and shutter speed in How Cameras Work. In addition to controlling the amount of light, the camera has to adjust the lenses to control how the light is focused on the sensor. In general, the lenses on digital cameras are very similar to conventional camera lenses -- some digital cameras can even use conventional lenses. Most use automatic focusing techniques, which you can learn more about in the article How Autofocus Cameras Work. The focal length, however, is one important difference between the lens of a digital camera and the lens of a 35mm camera. The focal length is the distance between the lens and the surface of the sensor. Sensors from different manufacturers vary widely in size, but in general they're smaller than a piece of 35mm film. In order to project the image onto a smaller sensor, the focal length is shortened by the same proportion. For additional information on sensor sizes and comparisons to 35mm film, you can visit the Photo.net Web site. Focal length also determines the magnification, or zoom, when you look through the camera. In 35mm cameras, a 50mm lens gives a natural view of the subject. Increasing the focal length increases the magnification, and objects appear to get closer. The reverse happens when decreasing the focal length. A zoom lens is any lens that has an adjustable focal length, and digital cameras can have optical or digital zoom -- some have both. Some cameras also have macro focusing capability, meaning that the camera can take pictures from very close to the subject.

Digital cameras have one of four types of lenses:
Fixed-focus, fixed-zoom lenses - These are the kinds of lenses on disposable and inexpensive film cameras -- inexpensive and great for snapshots, but fairly limited.
Optical-zoom lenses with automatic focus - Similar to the lens on a video camcorder, these have "wide" and "telephoto" options and automatic focus. The camera may or may not support manual focus. These actually change the focal length of the lens rather than just magnifying the information that hits the sensor. Digital-zoom lenses - With digital zoom, the camera takes pixels from the center of the image sensor and interpolates them to make a full-sized image. Depending on the resolution of the image and the sensor, this approach may create a grainy or fuzzy image. You can manually do the same thing with image processing software -- simply snap a picture, cut out the center and magnify it. Replaceable lens systems - These are similar to the replaceable lenses on a 35mm camera. Some digital cameras can use 35mm camera lenses.

Most digital cameras have an LCD screen, so you can view your picture right away. This is one of the great advantages of a digital camera -- you get immediate feedback on what you capture. Of course, viewing the image on your camera would lose its charm if that's all you could do. You want to be able to load the picture into your computer or send it directly to a printer. There are several ways to do this.

No matter what type of storage they use, all digital cameras need lots of room for pictures. They usually store images in one of two formats -- TIFF, which is uncompressed, and JPEG, which is compressed. Most cameras use the JPEG file format for storing pictures, and they sometimes offer quality settings (such as medium or high). The following chart will give you an idea of the file sizes you might expect with different picture sizes.
Image Size
TIFF(uncompressed)
JPEG(high quality)
JPEG(medium quality)
640x480
1.0 MB
300 KB
90 KB
800x600
1.5 MB
500 KB
130 KB
1024x768
2.5 MB
800 KB
200 KB
1600x1200
6.0 MB
1.7 MB
420 KB
To make the most of their storage space, almost all digital cameras use some sort of data compression to make the files smaller. Two features of digital images make compression possible. One is repetition. The other is irrelevancy. Imagine that throughout a given photo, certain patterns develop in the colors. For example, if a blue sky takes up 30 percent of the photograph, you can be certain that some shades of blue are going to be repeated over and over again. When compression routines take advantage of patterns that repeat, there is no loss of information and the image can be reconstructed exactly as it was recorded. Unfortunately, this doesn't reduce files any more than 50 percent, and sometimes it doesn't even come close to that level. Irrelevancy is a trickier issue. A digital camera records more information than the human eye can easily detect. Some compression routines take advantage of this fact to throw away some of the more meaningless data.

It takes several steps for a digital camera to take a picture. Here's a review of what happens in a CCD camera, from beginning to end:
You aim the camera at the subject and adjust the optical zoom to get closer or farther away.
You press lightly on the shutter release.
The camera automatically focuses on the subject and takes a reading of the available light.
The camera sets the aperture and shutter speed for optimal exposure.
You press the shutter release all the way.
The camera resets the CCD and exposes it to the light, building up an electrical charge, until the shutter closes.
The ADC measures the charge and creates a digital signal that represents the values of the charge at each pixel.
A processor interpolates the data from the different pixels to create natural color. On many cameras, it is possible to see the output on the LCD at this stage.
A processor may perform a preset level of compression on the data.
The information is stored in some form of memory device (probably a Flash memory card).

Basics of Digital Photography

Understanding the Basics of Digital Photography
Let's say you want to take a picture and e-mail it to a friend. To do this, you need the image to be represented in the language that computers recognize -- bits and bytes. Essentially, a digital image is just a long string of 1s and 0s that represent all the tiny colored dots -- or pixels -- that collectively make up the image. (For information on sampling and digital representations of data, see this explanation of the digitization of sound waves. Digitizing light waves works in a similar way.)
If you want to get a picture into this form, you have two options:
You can take a photograph using a conventional film camera, process the film chemically, print it onto photographic paper and then use a digital scanner to sample the print (record the pattern of light as a series of pixel values).
You can directly sample the original light that bounces off your subject, immediately breaking that light pattern down into a series of pixel values -- in other words, you can use a digital camera.
At its most basic level, this is all there is to a digital camera. Just like a conventional camera, it has a series of lenses that focus light to create an image of a scene. But instead of focusing this light onto a piece of film, it focuses it onto a semiconductor device that records light electronically. A computer then breaks this electronic information down into digital data. All the fun and interesting features of digital cameras come as a direct result of this process.
In the next few sections, we'll find out exactly how the camera does all this.

Cool Facts

  • With a 3-megapixel camera, you can take a higher-resolution picture than most computer monitors can display.

  • You can use your Web browser to view digital pictures taken using the JPEG format.

  • The first consumer-oriented digital cameras were sold by Kodak and Apple in 1994.
    In 1998, Sony inadvertently sold more than 700,000 camcorders with a limited ability to see through clothes.

Found this info at: http://travel.howstuffworks.com/

Sunday, January 08, 2006

The Celtic Cross



The Celtic Cross
also known as the Ionic Cross, Irish Cross and St. John's Cross
The Celtic Cross Anglicans/Episcopalians usually call this the Celtic Cross, whereas Catholics often refer to it as the Irish Cross. But just as the Anglican/Episcopalian Christ is the same as the Catholic Christ, so the Celtic and Irish Cross are one and the same.The cross is so named because early examples are found in the Celtic land of Ireland, where in about 800 A.D., missionaries erected these stone crosses to mark preaching stations and monasteries. They are also found extensively in churches and market squares in other the Celtic lands of Scotland (including the Isle of Iona off western Scotland), Wales, and the south-west of England. The construction is simply a
Latin Cross with a ring in the centre. Our other pages explain the meaning of that cross, but what is the ring? Because of its antiquity, the Celtic Cross is popular with neo-Druids, occultists, neo-Pagans and New Age followers, who often interpret the ring as either the sun god Taranis or a wheel. Some see this wheel as a navigation instrument, used to "design geometric structures that reflected the fundamental laws of nature and the recurring natural cycles of order and chaos" (Crichton E M Miller). The most common Christian interpretations of the ring include:a symbol of eternity that emphasizes the everlasting love of God, as shown through Christ's crucifixionthe world, for which Christ died Christ's resurrectiona halo and finally, the story of St. Patrick, living with some new Christian converts who had been Druids. Patrick took one of their standing stones etched with a circle that symbolised their moon goddess, and scratched a Latin cross mark over the circle. This was to show that Christianity had replaced their pagan beliefs....And of course, all of these explanations could be correct! Who knows, the circle might have originally represented a moon god, the sun god Taranis, or a wheel, or a phallic symbol with its association with everlasting life, or an astrological instrument. But when the stone crosses were carved by Christians (probably since the 6th Century) they were doing so with their Christian God in mind. And like church buildings, hymns, vestiges and many other trappings used by the Church in those days, they were influenced by existing pagan customs and culture in their art and design.

(The Celtic Cross is also sometimes called St. John's Cross. Confusingly, the
Maltese Cross is also sometimes referred to as St. John's Cross.)

Saint Andrew's Cross


St. Andrew's Cross
It is believed that the apostle Andrew was crucified on a saltire (X-shaped) cross; hence the name St. Andrew's Cross. He is supposed to have told his executioners that he was not worthy to be crucified on the same cross style as Jesus, and persuaded them to alter the shape. If this is true, it's a remarkable example of stoicism displayed by a man, no doubt beaten and starved, yet retaining the mental energy to plead such a thing with his brutal executioners. Detailed records of his crucifixion only date back to the Middle Ages, and these records are influenced be the imagination of the medieval artists. But even if the origin is a myth, the cross shape reminds Christians that they should exercise humility.
Before Peter was crucified, he too requested that a cross different to Christ's
Latin Cross be used. Therefore we have another cross that Christians associate with humility, which is the upside-down Latin Cross, known as St. Peter's Cross.
Instead of simply saying that something is 'X-shaped', the term 'St. Andrew's Cross' is used for several items that have absolutely nothing to do with St. Andrew or even religion. For example, there is argiope mangal - a tiny, brightly striped spider found in the mangroves of Singapore. This is commonly known as 'St. Andrew's Spider' because it holds its eight legs in pairs, forming an X shape. Then there's the hypericum hypericoides, a small shrub of the St. John's-wort family. Its flowers form a cross with their four yellow petals.
The saltire is seen on several national flags. For example the white cross on a blue background as the flag of Scotland, and a red cross on a white background as St. Patrick's cross of the Irish. Both of these crosses were superimposed on England's red cross on a white background,
St. George's Cross, to give the United Kingdom's Union Flag ('Union Jack').
All these crosses represent the Christian religion of the kings at the time the flags were made. The Union Flag also forms part of the flags of many other countries, including: Anguilla, Australia, Bermuda, British Virgin Islands, Cayman Islands, Falkland Islands, Fiji, Montserrat, New Zealand, St Helena, Turks & Caicos, and Tuvalu.
Other national flags have an 'X' cross, but these have no Christian basis. The flag of Burundi for example, where even though the country is nominally 'Christian', the white cross is not used as a religious symbol. It is a symbol of peace - the goal of everyone after years of ethnic violence between Hutu and Tutsi factions. The flag of Grenada just happens to have a cross made by the four triangles of wisdom, warmth, vegetation and agriculture. The yellow/gold cross on the Jamaican flag signifies sunshine, as with the Macedonian flag.


St. Andrew's crossScotland St. Patrick's crossIreland St. George's crossEngland
Union flag

There is a variation of St. Andrew's cross on the flag of the Vatican. Since the 14th century, two crossed keys have been the official insignia of the Holy See. These keys are the symbols of St. Peter (popes are the direct descendants of St. Peter's office). The keys were given to Peter by Christ to open the doors to paradise, just as the cross does for all Christians.

The Vatican's flag

Some might say the Southern Cross on the American Confederate flag is the Christian symbol from the St. Andrew's cross, since many Southerners have Scottish ancestors. Others may say the flag is racist.
...which all goes to show that the real meaning of a flag, or a cross, is whatever we want it to be.